Local Minima Embedding
نویسندگان
چکیده
Dimensionality reduction is a commonly used step in many algorithms for visualization, classification, clustering and modeling. Most dimensionality reduction algorithms find a low dimensional embedding that preserves the structure of high-dimensional data points. This paper proposes Local Minima Embedding (LME), a technique to find a lowdimensional embedding that preserves the local minima structure of a given objective function. LME provides an embedding that is useful for visualizing and understanding the relation between the original variables that create local minima. Additionally, the embedding can potentially be used to sample the original function to discover new local minima. The function in the embedded space takes an analytic form and hence the gradients can be computed analytically. We illustrate the benefits of LME in both synthetic data and real problems in the context of image alignment. To the best of our knowledge this is the first paper that addresses the problem of finding an embedding that preserves local minima properties of an objective function.
منابع مشابه
Link Prediction using Network Embedding based on Global Similarity
Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...
متن کاملAn Introduction to Locally Linear Embedding
Many problems in information processing involve some form of dimensionality reduction. Here we describe locally linear embedding (LLE), an unsupervised learning algorithm that computes low dimensional, neighborhood preserving embeddings of high dimensional data. LLE attempts to discover nonlinear structure in high dimensional data by exploiting the local symmetries of linear reconstructions. No...
متن کاملGeometric Data Fitting
Given a dense set of points lying on or near an embedded submanifold M0 ⊂ Rn of Euclidean space, the manifold fitting problem is to find an embedding F :M → Rn that approximatesM0 in the sense of least squares. When the dataset is modeled by a probability distribution, the fitting problem reduces to that of finding an embedding that minimizes Ed[F], the expected square of the distance from a po...
متن کاملNonlinear dimensionality reduction by locally linear embedding.
Many areas of science depend on exploratory data analysis and visualization. The need to analyze large amounts of multivariate data raises the fundamental problem of dimensionality reduction: how to discover compact representations of high-dimensional data. Here, we introduce locally linear embedding (LLE), an unsupervised learning algorithm that computes low-dimensional, neighborhood-preservin...
متن کاملاثرهای تنش شوری بر ویژگیهای ریختشناسی و فیزیولوژیک ورد مینیاتوری (Rosa chinensis Jacq. var. minima Rehd.)
توجه به تنشهای نازیوا در گونههای گیاهی بهدلیل حضور گسترده این تنشها در زمینهای کشاورزی و احتمال افزایش شدت آنها بهدلیل تغییر اقلیم، ضروری میباشد. برای بررسی اثرهای تنش شوری بر برخی ویژگیهای ریختشناسی و فیزیولوژیکی رقمهای ورد (رز) مینیاتوری (Rosa chinensis Jacq. var. minima Rehd.) آزمایشی بهصورت فاکتوریل در قالب طرح پایه بهطورکامل تصادفی در گلخانه انجام شد. تیمارها بهصور...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010